

ARssist: Augmented Reality on a Head-Mounted Display for the First Assistant in Robotic Surgery

Long Qian, Anton Deguet, Peter Kazanzides Johns Hopkins University

Objective:

- To improve **efficiency** and **comfort** of the first assistant, by
 - providing guidance to instrument manipulation when it is invisible
 - restoring the hand-eye coordination
 - bringing the stereo endoscopic video closer to the surgery site

The First Assistant (FA):

- An important member of the robotic surgery team

We propose **ARssist**:

- An Augmented Reality application based on optical see-through head-mounted
- display - "Fail-safe"
- Unhindered vision of the scene
- It visualizes:
 - Robotic instruments and hand-held instruments "inside" the body
 - Endoscope and its fieldof-view indicator Stereo endoscopic video (as heads-up display, as virtual monitor, or projected in the frustum)

- The **tasks** for the first assistant include:
 - Insufflation and trocar placement
 - Dock and undock the robot
 - Instrument exchange
 - Manipulating laparoscopic instruments, e.g. stapler, grasper
 - Applying hemostatic instruments, e.g. vessel sealer
 - Specimen extraction
- The current working condition of the first assistant: -

Bad Hand-Eye Coordination

Endoscope video on "Virtual 3D monitor"

Implementation:

- Microsoft HoloLens + da Vinci Research Kit (dVRK)
- Attach fiducial markers to the manipulators

Tracking of the instruments: -- Prioritization and static error compensation

Frequent Head Motion

Visualization Results:

With a transparent phantom

With drape covered

Synchronized stereo endoscopy streaming

Endoscopy visualized as heads-up display

Overlay with hand-held instruments

Endoscopy visualized in the frustum of the endoscope

Images captured with eyesimulating cameras behind HoloLens

Right Eye

- Field-of-view of endoscope —
 - Camera calibration
 - Field-of-view calculation
 - Different endoscope configuration -

$$FOV_v = 2 \cdot \arctan\left(\frac{h}{2f_y}\right)$$
, $FOV_h = 2 \cdot \arctan\left(\frac{w}{2f_x}\right)$

Display calibration of the OST-HMD —

- System performance —
 - Latency of overlay:
 - Accuracy of overlay: -
 - Rendering framerate:
 - Tracking framerate:
 - Endoscopic video resolution: —
 - Endoscopic video framerate:
- 220.81+25.54 ms 4.27+3.09 mm 32.91+1.96 Hz 13.64+0.78 Hz
 - 2 x 640 x 360
 - 26.57+3.10 Hz

- Acknowledgements:
- This work is supported by the 2018 Research Technology Grant from Intuitive Surgical Operations, Inc.